Menü Überspringen
Kontakt
Presse
Deutsch
English
Not track
Datenverarbeitung
Suche
Anmelden
DIPF aktuell
Forschung
Infrastrukturen
Institut
Zurück
Kontakt
Presse
Deutsch
English
Not track
Datenverarbeitung
Suche
Startseite
>
Forschung
>
Publikationen
>
Publikationendatenbank
Ergebnis der Suche in der DIPF Publikationendatenbank
Ihre Abfrage:
(Schlagwörter: "Klassifikation")
zur erweiterten Suche
Suchbegriff
Nur Open Access
Suchen
Markierungen aufheben
Alle Treffer markieren
Export
39
Inhalte gefunden
Alle Details anzeigen
Crowdsourcing a large dataset of domain-specific context-sensitive semantic verb relations
Sukhareva, Maria; Eckle-Kohler, Judith; Habernal, Ivan; Gurevych, Iryna
Sammelbandbeitrag
| Aus: European Language Resources Association (Hrsg.): Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016) | Portoroz: European Language Resources Association | 2016
36972 Endnote
Autor*innen:
Sukhareva, Maria; Eckle-Kohler, Judith; Habernal, Ivan; Gurevych, Iryna
Titel:
Crowdsourcing a large dataset of domain-specific context-sensitive semantic verb relations
Aus:
European Language Resources Association (Hrsg.): Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016), Portoroz: European Language Resources Association, 2016 , S. 2131-2137
URL:
https://www.ukp.tu-darmstadt.de/fileadmin/user_upload/Group_UKP/publikationen/2016/lrec2016_sukhareva.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Automatisierung; Computerlinguistik; Data Mining; Klassifikation; Semantik; Textanalyse
Abstract (english):
We present a new large dataset of 12403 context-sensitive verb relations manually annotated via crowdsourcing. These relations capture fine-grained semantic information between verb-centric propositions, such as temporal or entailment relations. We propose a novel semantic verb relation scheme and design a multi-step annotation approach for scaling-up the annotations using crowdsourcing. We employ several quality measures and report on agreement scores. The resulting dataset is available under a permissive CreativeCommons license. It represents a valuable resource for various applications, such as automatic information consolidation or automatic summarization. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Using semantic similarity for multi-label zero-shot classification of text documents
Veeranna, Sappadla Prateek; Nam, Jinseok; Mencía, Eneldo Loza; Fürnkranz, Johannes
Sammelbandbeitrag
| Aus: European Symposium on Artificial Neural Networks (Hrsg.): ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (Belgium), 27-29 April 2016 | Bruges: European Symposium on Artificial Neural Networks | 2016
36982 Endnote
Autor*innen:
Veeranna, Sappadla Prateek; Nam, Jinseok; Mencía, Eneldo Loza; Fürnkranz, Johannes
Titel:
Using semantic similarity for multi-label zero-shot classification of text documents
Aus:
European Symposium on Artificial Neural Networks (Hrsg.): ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (Belgium), 27-29 April 2016, Bruges: European Symposium on Artificial Neural Networks, 2016 , S. 423-428
URL:
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-174.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Computerlinguistik; Klassifikation; Semantik; Text
Abstract (english):
In this paper, we examine a simple approach to zero-shot multi-label text classification, i.e., to the problem of predicting multiple, possibly previously unseen labels for a document. In particular, we propose to use a semantic embedding of label and document words and base the prediction of previously unseen labels on the similarity between the label name and the document words in this embedding. Experiments on three textual datasets across various domains show that even such a simple technique yields considerable performance improvements over a simple uninformed baseline. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Social background
Watermann, Rainer; Maaz, Kai; Bayer, Sonja; Roczen, Nina
Sammelbandbeitrag
| Aus: Kuger, Susanne;Klieme, Eckhard; Jude, Nina; Kaplan, David (Hrsg.): Assessing contexts of learning: An international perspective | Cham: Springer | 2016
36703 Endnote
Autor*innen:
Watermann, Rainer; Maaz, Kai; Bayer, Sonja; Roczen, Nina
Titel:
Social background
Aus:
Kuger, Susanne;Klieme, Eckhard; Jude, Nina; Kaplan, David (Hrsg.): Assessing contexts of learning: An international perspective, Cham: Springer, 2016 (Methodology of educational measurement and assessment), S. 117-145
DOI:
10.1007/978-3-319-45357-6_5
URL:
http://www.springer.com/de/book/9783319453569
Dokumenttyp:
Beiträge in Sammelbänden; Sammelband (keine besondere Kategorie)
Sprache:
Englisch
Schlagwörter:
Feldstudien; Schüler; Demografische Daten; Finanzen; Kulturelle Aktivität; Soziale Interaktion; Schule; Internationaler Vergleich; Schülerleistung; Leistungsmessung; Sozioökonomische Lage; Einflussfaktor; Theorie; Empirische Forschung; Eltern; Beruf; Klassifikation; Ranking; Bildungsniveau; Einkommen; Sozialkapital; Kulturelles Kapital; PISA <Programme for International Student Assessment>
Abstract (english):
Assessing and measuring students' social background characteristics and relating their background data to achievement is pervasive in international large-scale assessments (ILSAs). Our review focuses on two strains of research: the use of socio-economic status (SES) on the one hand, and the use of cultural and social capital on the other. With regard to SES, we provide a brief overview of theoretical concepts, contrasting unidimensional and multidimensional views. We discuss the variety of measures of SES that researchers use in their studies, highlighting the lack of consensus on their conceptual meaning and measurement. We then outline how key indicators of SES (e.g., parental occupation, parental education, parental income) are assessed in ILSAs. This is followed by a section on the quality of students' reports of parent's SES characteristics. With regard to cultural and social capital we discuss the mechanisms that underlie the relationship between social background and students' achievement. In addition, we give a brief overview of research applying the theory of cultural and social capital in the context of ILSAs. Finally, practical implications for the assessment of social background characteristics in ILSA are discussed, and recommendations are offered. Some of these background characteristics were tested in the PISA 2015 field trial. (DIPF/Orig.)
DIPF-Abteilung:
Bildungsqualität und Evaluation; Struktur und Steuerung des Bildungswesens
A cross-classified CFA-MTMM model for structurally different and non-independent interchangeable […]
Koch, Tobias; Schultze, Martin; Jeon, Minjeong; Nussbeck, Fridtjof; Praetorius, Anna-Katharina; […]
Zeitschriftenbeitrag
| In: Multivariate Behavioral Research | 2016
35942 Endnote
Autor*innen:
Koch, Tobias; Schultze, Martin; Jeon, Minjeong; Nussbeck, Fridtjof; Praetorius, Anna-Katharina; Eid, Michael
Titel:
A cross-classified CFA-MTMM model for structurally different and non-independent interchangeable methods
In:
Multivariate Behavioral Research, 51 (2016) 1, S. 67-85
DOI:
10.1080/00273171.2015.1101367
Dokumenttyp:
Zeitschriftenbeiträge; Zeitschriftenbeiträge
Sprache:
Englisch
Schlagwörter:
Datenanalyse; Klassifikation; Messung; Methode; Modell
Abstract (english):
Multirater (multimethod, multisource) studies are increasingly applied in psychology. Eid and colleagues (2008) proposed a multilevel confirmatory factor model for multitrait-multimethod (MTMM) data combining structurally different and multiple independent interchangeable methods (raters). In many studies, however, different interchangeable raters (e.g., peers, subordinates) are asked to rate different targets (students, supervisors), leading to violations of the independence assumption and to cross-classified data structures. In the present work, we extend the ML-CFA-MTMM model by Eid and colleagues (2008) to cross-classified multirater designs. The new C4 model (Cross-Classified CTC[M-1] Combination of Methods) accounts for nonindependent interchangeable raters and enables researchers to explicitly model the interaction between targets and raters as a latent variable. Using a real data application, it is shown how credibility intervals of model parameters and different variance components can be obtained using Bayesian estimation techniques. (DIPF/Orig.)
DIPF-Abteilung:
Bildungsqualität und Evaluation
Multi-view learning with dependent views
Brefeld, Ulf
Sammelbandbeitrag
| Aus: ACM (Hrsg.): Proceedings of the ACM/SIGAPP Symposium on Applied Computing | New York: Association for Computing Machinery | 2015
35621 Endnote
Autor*innen:
Brefeld, Ulf
Titel:
Multi-view learning with dependent views
Aus:
ACM (Hrsg.): Proceedings of the ACM/SIGAPP Symposium on Applied Computing, New York: Association for Computing Machinery, 2015 , S. 1-6
URL:
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/kma_publications/sac2015.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Algorithmus; Computerprogramm; Daten; Klassifikation; Lernen; Text
Abstract:
Multi-view algorithms, such as co-training and co-EM, utilize unlabeled data when the available attributes can be split into independent and compatible subsets. Experiments have shown that multi-view learning is sometimes beneficial for problems for which the independence assumption is not satisfied. In practice, unfortunately, it is not possible to measure the dependency between two attribute sets; hence, there is no criterion which allows to decide whether multi-view learning is applicable. We conduct experiments with various text classification problems and investigate on the effectiveness of the co-trained SVM and the co-EM SVM under various conditions, including violations of the independence 0assumption. We identify the error correlation coefficient of the initial classifiers as an elaborate indicator of the expected benefit of multi-view learning. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Linking the thoughts. Analysis of argumentation structures in scientific publications
Kirschner, Christian; Eckle-Kohler, Judith; Gurevych, Iryna
Sammelbandbeitrag
| Aus: Association for Computational Linguistics (Hrsg.): Proceedings of the 2nd Workshop on Argumentation Mining held in conjunction with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL HLT 2015) | Denver; CO: Association for Computational Linguistics | 2015
35503 Endnote
Autor*innen:
Kirschner, Christian; Eckle-Kohler, Judith; Gurevych, Iryna
Titel:
Linking the thoughts. Analysis of argumentation structures in scientific publications
Aus:
Association for Computational Linguistics (Hrsg.): Proceedings of the 2nd Workshop on Argumentation Mining held in conjunction with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL HLT 2015), Denver; CO: Association for Computational Linguistics, 2015 , S. 1-11
URL:
https://aclweb.org/anthology/W/W15/W15-05.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Argumentation; Automatisierung; Bildungsforschung; Computerlinguistik; Data Mining; Klassifikation; Textanalyse; Veröffentlichung
Abstract:
This paper presents the results of an annotation study focused on the fine-grained analysis of argumentation structures in scientific publications. Our new annotation scheme specifies four types of binary argumentative relations between sentences, resulting in the representation of arguments as small graph structures. We developed an annotation tool that supports the annotation of such graphs and carried out an annotation study with four annotators on 24 scientific articles from the domain of educational research. For calculating the inter-annotator agreement, we adapted existing measures and developed a novel graph based agreement measure which reflects the semantic similarity of different annotation graphs. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Constructive feedback, thinking process and cooperation. Assessing the quality of classroom […]
Sousa, Tahir; Flekova, Lucie; Mieskes, Margot; Gurevych, Iryna
Sammelbandbeitrag
| Aus: Möller, Sebastian (Hrsg.): Proceedings of the Interspeech 2015 Conference Dresden | Berlin: Technische Universität | 2015
35635 Endnote
Autor*innen:
Sousa, Tahir; Flekova, Lucie; Mieskes, Margot; Gurevych, Iryna
Titel:
Constructive feedback, thinking process and cooperation. Assessing the quality of classroom interaction
Aus:
Möller, Sebastian (Hrsg.): Proceedings of the Interspeech 2015 Conference Dresden, Berlin: Technische Universität, 2015 , S. 2739-2743
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Computerlinguistik; Datenanalyse; Denken; Deutschland; Diskursanalyse; Feedback; Interaktionsanalyse; Klassifikation; Kooperation; Mathematikunterricht; Qualität; Schulklasse; Schweiz; Semantik; Soziale Interaktion; Sprachanalyse; Unterrichtsforschung; Video
Abstract:
Analyzing and assessing the quality of classroom lessons on a range of quality dimensions is a number one educational research topic, as this allows developing teacher trainings and interventions to improve lesson quality. We model this assessment as a text classification task, exploiting linguistic features to predict the scores in several lesson quality dimensions relevant for educational researchers. Our work relies on a variety of phenomena, amongst them paralinguistic features, such as laughter, from real classroom interactions. We used these features to train machine learning models to assess various quality dimensions of school lessons. Our results show, that especially features focusing on the discourse and semantics are beneficial for this classification task. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Automated verb sense labelling based on linked lexical resources
Cholakov, Kostadin; Eckle-Kohler, Judith; Gurevych, Iryna
Sammelbandbeitrag
| Aus: Wintner, Shuly; Goldwater, Sharon; Riezler, Stefan (Hrsg.): Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2014) | Stroudsburg; PA: Association for Computational Linguistics | 2014
34573 Endnote
Autor*innen:
Cholakov, Kostadin; Eckle-Kohler, Judith; Gurevych, Iryna
Titel:
Automated verb sense labelling based on linked lexical resources
Aus:
Wintner, Shuly; Goldwater, Sharon; Riezler, Stefan (Hrsg.): Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2014), Stroudsburg; PA: Association for Computational Linguistics, 2014 , S. 68-77
URL:
http://aclweb.org/anthology/E/E14/E14-1008.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Ambiguität; Automatisierung; Computerlinguistik; Computerunterstütztes Verfahren; Daten; Evaluation; Klassifikation; Qualität; Semantk; Sinn; Syntax; Wort
Abstract:
We present a novel approach for creating sense annotated corpora automatically. Our approach employs shallow syntactico-semantic patterns derived from linked lexical resources to automatically identify instances of word senses in text corpora. We evaluate our labelling method intrinsically on SemCor and extrinsically by using automatically labelled corpus text to train a classifier for verb sense disambiguation. Testing this classifier on verbs from the English MASC corpus and on verbs from the Senseval-3 all-words disambiguation task shows that it matches the performance of a classifier which has been trained on manually annotated data.
DIPF-Abteilung:
Informationszentrum Bildung
DKPro TC. A Java-based framework for supervised learning experiments on textual data
Daxenberger, Johannes; Ferschke, Oliver; Gurevych, Iryna; Zesch, Torsten
Sammelbandbeitrag
| Aus: Bontcheva, Kalina; Jingbo, Zhu (Hrsg.): Proceedings of COLING 2014: System demonstrations | Stroudsburg; PA: Association for Computational Linguistics | 2014
34721 Endnote
Autor*innen:
Daxenberger, Johannes; Ferschke, Oliver; Gurevych, Iryna; Zesch, Torsten
Titel:
DKPro TC. A Java-based framework for supervised learning experiments on textual data
Aus:
Bontcheva, Kalina; Jingbo, Zhu (Hrsg.): Proceedings of COLING 2014: System demonstrations, Stroudsburg; PA: Association for Computational Linguistics, 2014 , S. 61-66
URL:
http://aclweb.org/anthology/P/P14/P14-5011.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Automatisierung; Computerlinguistik; Computerprogramm; Data Mining; Datenverarbeitung; Klassifikation; Programmiersprache; Text; Textanalyse
Abstract:
We present DKPro TC, a framework for supervised learning experiments on textual data. The main goal of DKPro TC is to enable researchers to focus on the actual research task behind the learning problem and let the framework handle the rest. It enables rapid prototyping of experiments by relying on an easy-to-use workflow engine and standardized document preprocessing based on the Apache Unstructured Information Management Architecture (Ferrucci and Lally, 2004). It ships with standard feature extraction modules, while at the same time allowing the user to add customized extractors. The extensive reporting and logging facilities make DKPro TC experiments fully replicable. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
UKPDIPF. A lexical semantic approach to sentiment polarity prediction in Twitter data
Flekova, Lucie; Ferschke, Oliver; Gurevych, Iryna
Sammelbandbeitrag
| Aus: Nakov, Preslav; Zesch, Torsten (Hrsg.): Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) | Stroudsburg; PA: Association for Computational Linguistics | 2014
34724 Endnote
Autor*innen:
Flekova, Lucie; Ferschke, Oliver; Gurevych, Iryna
Titel:
UKPDIPF. A lexical semantic approach to sentiment polarity prediction in Twitter data
Aus:
Nakov, Preslav; Zesch, Torsten (Hrsg.): Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Stroudsburg; PA: Association for Computational Linguistics, 2014 , S. 704-710
URL:
http://alt.qcri.org/semeval2014/cdrom/pdf/SemEval2014126.pdf
Dokumenttyp:
Beiträge in Sammelbänden; Tagungsband/Konferenzbeitrag/Proceedings
Sprache:
Englisch
Schlagwörter:
Ausdruck <Psy>; Computerlinguistik; Emotion; Klassifikation; Schriftsprache; Semantik; Soziale Software; Textanalyse
Abstract:
We present a sentiment classification system that participated in the SemEval 2014 shared task on sentiment analysis in Twitter. Our system expands tokens in a tweet with semantically similar expressions using a large novel distributional thesaurus and calculates the semantic relatedness of the expanded tweets to word lists repre- senting positive and negative sentiment. This approach helps to assess the polarity of tweets that do not directly contain polarity cues. Moreover, we incorporate syntactic, lexical and surface sentiment features. On the message level, our system achieved the 8th place in terms of macroaveraged F-score among 50 systems, with particularly good performance on the Life-Journal corpus (F1=71.92) and the Twitter sarcasm (F1=54.59) dataset. On the expression level, our system ranked 14 out of 27 systems, based on macro-averaged F-score. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Markierungen aufheben
Alle Treffer markieren
Export
<
1
2
(aktuell)
3
4
>
Alle anzeigen
(39)