Logo: Deutsches Institut für Internationale Pädagogische Forschung

Publications

Publikationendatenbank

show results

Autor:
Tzouridis, Emmanouil; Nasir, Jamal A.; Brefeld, Ulf:

Titel:
Learning to summarise related sentences

Quelle:
In: Association for Computational Linguistics (Hrsg.): Proceedings of COLING 2014 Dublin : Association for Computational Linguistics (2014) , 1636-1647

URL des Volltextes:
http://www.aclweb.org/anthology/C14-1155

Sprache:
Englisch

Dokumenttyp:
4. Beiträge in Sammelwerken; Tagungsband/Konferenzbeitrag/Proceedings

Schlagwörter:
Abstract, Algorithmus, Automatisierung, Computerlinguistik, Datenverarbeitung, Semantik, Text


Abstract(original):
We cast multi-sentence compression as a structured prediction problem. Related sentences are represented by a word graph so that summaries constitute paths in the graph (Filippova, 2010). We devise a parameterised shortest path algorithm that can be written as a generalised linear model in a joint space of word graphs and compressions. We use a large-margin approach to adapt parameterised edge weights to the data such that the shortest path is identical to the desired summary. Decoding during training is performed in polynomial time using loss augmented inference. Empirically, we compare our approach to the state-of-the-art in graph-based multi-sentence compression and observe significant improvements of about 7% in ROUGE F-measure and 8% in BLEU score, respectively. (DIPF/Orig.)


DIPF-Abteilung:
Informationszentrum Bildung

Notizen:

last modified Nov 11, 2016