DIPF database of publications

Detailansicht Treffer

DIPF database of publications

Show results

Author
Knauf, Konstantin; Memmert, Daniel; Brefeld, Ulf:

Title:
Spatio-temporal convolution kernels

Source:
In: Machine Learning Journal, 102 (2016) 2 , 247-273

Language:
Englisch

Document type
3a. Beiträge in begutachteten Zeitschriften; Aufsatz (keine besondere Kategorie)

Schlagwörter:
Betriebssystem, Computerspiel, Daten, Datenübertragung, Datenübertragungstechnik, Objekt, Raum, Zeit


Abstract(original):
Trajectory data of simultaneously moving objects is being recorded in many different domains and applications. However, existing techniques that utilise such data often fail to capture characteristic traits or lack theoretical guarantees. We propose a novel class of spatio-temporal convolution kernels to capture similarities in multi-object scenarios. The abstract kernel is a composition of a temporal and a spatial kernel and its actual instantiations depend on the application at hand. Empirically, we compare our kernels and efficient approximations thereof to baseline techniques for clustering tasks using artificial and real world data from team sports. (DIPF/Orig.)


DIPF-Departments:
Information Center for Education

Notes: