Logo: Deutsches Institut für Internationale Pädagogische Forschung

Publications

Publikationendatenbank

show results

Autor:
Knauf, Konstantin; Memmert, Daniel; Brefeld, Ulf:

Titel:
Spatio-temporal convolution kernels

Quelle:
In: Machine Learning Journal, 102 (2016) 2 , 247-273

Sprache:
Englisch

Dokumenttyp:
3a. Beiträge in begutachteten Zeitschriften; Aufsatz (keine besondere Kategorie)

Schlagwörter:
Betriebssystem, Computerspiel, Daten, Datenübertragung, Datenübertragungstechnik, Objekt, Raum, Zeit


Abstract(original):
Trajectory data of simultaneously moving objects is being recorded in many different domains and applications. However, existing techniques that utilise such data often fail to capture characteristic traits or lack theoretical guarantees. We propose a novel class of spatio-temporal convolution kernels to capture similarities in multi-object scenarios. The abstract kernel is a composition of a temporal and a spatial kernel and its actual instantiations depend on the application at hand. Empirically, we compare our kernels and efficient approximations thereof to baseline techniques for clustering tasks using artificial and real world data from team sports. (DIPF/Orig.)


DIPF-Abteilung:
Informationszentrum Bildung

Notizen:

last modified Nov 11, 2016