Publikationendatenbank
show results
Autor:
Schnober, Carsten;
Eger, Steffen;
Do Dinh, Erik-Lân;
Gurevych, Iryna:
Titel:
Still not there? Comparing traditional sequence-to-sequence models to encoder-decoder neural networks on monotone string translation tasks
Quelle:
In: The COLING 2016 Organizing Committee (Hrsg.): Proceedings of the 26th International Conference on Computational Linguistics (COLING)
Osaka :
The COLING 2016 Organizing Committee
(2016)
, 1703-1714
URL des Volltextes:
http://aclweb.org/anthology/C16-1160
Sprache:
Englisch
Dokumenttyp:
4. Beiträge in Sammelwerken; Tagungsband/Konferenzbeitrag/Proceedings
Schlagwörter:
Computerlinguistik,
Computerunterstütztes Verfahren,
Korrektur,
Rechtschreibung,
Text
Abstract(englisch):
We analyze the performance of encoder-decoder neural models and compare them with well-known established methods. The latter represent different classes of traditional approaches that are applied to the monotone sequence-to-sequence tasks OCR post-correction, spelling correction, grapheme-to-phoneme conversion, and lemmatization. Such tasks are of practical relevance for various higher-level research fields including digital humanities, automatic text correction, and speech recognition. We investigate how well generic deep-learning approaches adapt to these tasks, and how they perform in comparison with established and more specialized methods, including our own adaptation of pruned CRFs. (DIPF/Orig.)
DIPF-Abteilung:
Informationszentrum Bildung
Notizen: